If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x+95=0
a = 1; b = 20; c = +95;
Δ = b2-4ac
Δ = 202-4·1·95
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{5}}{2*1}=\frac{-20-2\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{5}}{2*1}=\frac{-20+2\sqrt{5}}{2} $
| 9^7x-8=20 | | 5n-5=5+10 | | 5-7(2-x)=3(1-4x) | | 2x+112=6x96 | | 3+3=2n+8 | | (233-3x)+(2x-15)=180 | | 2(x+8)=( | | 0.2(t-3)-(0.04)=0.01t-0.9 | | k-9/5+6=2k/3 | | X-5/7-8=2x+4/5 | | 7y-5=70 | | 2(x+8)=6(x-16) | | 2z+3=5z-12 | | 50-y=25 | | 7x+7*45=560 | | (x+2x)*2=1.8 | | 7x+7-14=6x+6-13 | | X^2-30x-15=0 | | 7x+7-14=6x+6-12 | | a=1/2*10*10 | | 22*4+2x=198 | | (28-2)/2=x | | x^2+(3x-10)^2=10 | | 4(2c-3)-3(4c+1)=-c | | 5x-5=3(2x-4) | | 7x-3x+8=x+2 | | 80x=-30 | | m+m2=10 | | M2+m=10 | | m2+m=18 | | 3/2x+1=14-3/2x | | 2(7x-2)-3x=9x-8 |